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Models of speciation-with-gene-flow have shown that the reduction in recombination between alternative chromosome arrange-

ments can facilitate the fixation of locally adaptive genes in the face of gene flow and contribute to speciation. However, it has

proven frustratingly difficult to show empirically that inversions have reduced gene flow and arose during or shortly after the

onset of species divergence rather than represent ancestral polymorphisms. Here, we present an analysis of whole genome data

from a pair of cactophilic fruit flies, Drosophila mojavensis and D. arizonae, which are reproductively isolated in the wild and

differ by several large inversions on three chromosomes. We found an increase in divergence at rearranged compared to colinear

chromosomes. Using the density of divergent sites in short sequence blocks we fit a series of explicit models of species divergence

in which gene flow is restricted to an initial period after divergence and may differ between colinear and rearranged parts of the

genome. These analyses show that D. mojavensis and D. arizonae have experienced postdivergence gene flow that ceased around

270 KY ago and was significantly reduced in chromosomes with fixed inversions. Moreover, we show that these inversions most

likely originated around the time of species divergence which is compatible with theoretical models that posit a role of inversions

in speciation with gene flow.
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Introduction
There has been much interest in understanding if and how chro-

mosomal inversions influence the speciation process. While early

verbal models (White 1973; Rieseberg 2001) focused on the con-

sequences of fitness underdominance of inversions, a more con-

vincing role of inversions in speciation stems from the fact that

they reduce recombination across a large swathe of the chromo-

some (Navarro and Barton 2003). Kirkpatrick and Barton (2006)

have shown that an inversion arising in a structured population

can spread if it captures locally beneficial alleles. By allow-

ing locally adapted genes to accumulate in linkage, inversions

may overcome the homogenising effect of gene flow and tip the

balance toward increasing divergence in the embryonic stages

of speciation (Rieseberg 2001; Navarro and Barton 2003). The

current flood of genome sequence data has made it possible to

test two key predictions of these models empirically.

Firstly, loci differentiating species should be concentrated in

or around inversions. This has been shown to be the case for genes

involved in hybrid sterility (Noor et al. 2001; Khadem et al. 2011;

Fishman et al. 2013) and host-associated life cycle differences

(Feder et al. 2003). Secondly, neutral divergence within and

around inversions should be increased relative to colinear parts of

the genomes as a consequence of reduced gene flow. A signature

of elevated divergence around inversion breakpoints has been

found not only in the sister species D. pseudoobscura and

D. persimilis, a classic model of speciation (Noor et al. 2007; Ku-

lathinal et al. 2009), but also in mosquitoes (Besansky et al. 2003;

Michel et al. 2006), sunflowers (Rieseberg et al. 1999), shrews

(Yannic et al. 2009), and Heliconius butterflies (Joron et al. 2011).

1
C© 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
Evolution



KONRAD LOHSE ET AL.

However, Noor and Bennett (2009) have cautioned against

simply equating an increase in divergence within and around in-

versions with a reduction in gene flow, especially if this is mea-

sured in terms of Fst . Such a signature on its own does not reveal

if and how inversions were involved in species divergence for

several reasons. Firstly, if chromosomal inversions are fixed by

positive selection, the likely inversion-wide hitch-hiking event

will decrease diversity around the inversion and hence increase

Fst , regardless of whether there has been any postdivergence gene

flow (Noor and Bennett 2009). This problem can be overcome by

using absolute measures of divergence, and a recent reanalysis

of several datasets (Cruickshank and Hahn 2014) suggests that

previous studies of species divergence have suffered from this

problem. Secondly, under a history of divergence with gene flow,

the population divergence time of an inversion that predates the

species split because it existed as a polymorphism in the ancestral

population, represents the origin of the inversion and so should be

older than the species divergence time estimated from the colin-

ear genomic background (Noor and Bennett 2009). In contrast, an

inversion that arose during (or shortly after) the onset of species

divergence (and so is more likely to be associated with the build

up of reproductive isolation) should share the same species diver-

gence time as the colinear background regardless of any reduction

in gene flow. Finally, given the considerable variance in coales-

cence times, gene divergence is expected to vary widely across

the genome simply by chance. Thus, demonstrating that postdi-

vergence gene flow has been reduced by a particular inversion

(or set of inversions) requires estimating the magnitude and tim-

ing of both population divergence and postdivergence gene flow

separately for rearranged and colinear regions of the genome.

The sibling species D. mojavensis and D. arizonae provide

an excellent opportunity for studying the effects of inversions

on species divergence. They are members of the mulleri sub-

group within the large D. repleta group (> 100 species) endemic

to North and South America (Wasserman 1982, 1992; Durando

et al. 2000; Oliveira et al. 2012). While D. mojavensis is endemic

to the Sonoran and Mojave Deserts in North America, the na-

tive range of D. arizonae includes the arid lands from Arizona,

USA to southern Mexico and Guatemala, but not Baja California

(Wasserman 1982) (although some recent collections have shown

that D. arizonae is now present in Baja California presumably

due to human activity). Both species share a common mainland

ancestor that diverged into D. mojavensis in Baja California and

D. arizonae on the mainland (Wasserman 1992). The reinvasion

of mainland Mexico from Baja California by D. mojavensis ca

250 KYA (Smith et al. 2012) involved switching host plants and

resulted in the current sympatric distribution of both species on the

mainland (Heed 1982; Etges et al. 1999). Although D. arizonae

and D. mojavensis can produce viable offspring in the lab (Mettler

1957) and sympatric populations in mainland Sonora and Sinaloa,

Mexico sometimes share breeding and feeding sites, that is the

same cactus rots (Markow et al. 1983; Ruiz and Heed 1988),

there is no evidence for hybridisation between these species in

the wild (Wasserman 1982; Etges et al. 1999; Counterman and

Noor 2006; Machado et al. 2007). D. mojavensis and D. arizonae

differ by several large, fixed inversions on three chromosomes

(Wasserman 1962): there are three overlapping inversions (2q, 2r,

2s) on chromosome 2 that are fixed in D. mojavensis and together

cover 70 % of the chromosome, two inversions on chromosome 3

(3d fixed in D. mojavensis and 3p2 fixed in D. arizonae) and one

inversion on the X (Xe, fixed in D. mojavensis) (Runcie and Noor

2009; Guillen and Ruiz 2012). Chromosomes 4 and 5 are colinear.

This provides an outstanding opportunity (including replication)

to test the role of inversions on gene flow in speciation.

Previous studies on the divergence history of D. mojaven-

sis and D. arizonae are equivocal: Counterman and Noor (2006)

compared gene divergence at 19 autosomal loci and found no

evidence for postdivergence gene flow or any significant differ-

ence in gene divergence between loci on rearranged and colinear

chromosomes. In contrast, Machado et al. (2007) in an analy-

sis of 10 autosomal loci found that allopatric D. mojavensis and

D. arizonae had significantly more fixed nucleotide differences in

rearranged than colinear chromosomes, a pattern that is consistent

with differential historical introgression. However, like Counter-

man and Noor (2006) they were unable to reject a model of strict

isolation without gene flow. Given the small number of loci ex-

amined by these studies and hence their limited power, it remains

unclear whether D. arizonae and D. mojavensis have experienced

postdivergence gene flow at all and, if so, whether this has been

reduced in rearranged chromosomes.

Here, we revisit the evolutionary history of D. arizonae and

D. mojavensis using whole genome data and address the following

questions:

(1) Has there been post divergence gene flow between D. arizonae

and D. mojavensis?

(2) Is gene flow greater in sympatry suggesting that it is recent or

ongoing?

(3) Is gene flow at rearranged chromosomes reduced?

(4) Does the origin of inversions predate the species divergence

time estimated for the colinear background or did inversions

arise around the time of species divergence?

Materials and Methods
SAMPLES, SEQUENCING, AND MAPPING

We sequenced genomes from five highly inbred lines; two

lines of D. mojavensis collected in Sonora (LB09, PO88), two

D. mojavensis lines from Baja California, (A975, A976), and one

D. arizonae (Dariz) line from Ejido Puerto Arturo, Sonora
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(Table S1 and Methods). Because Sonoran populations of D. mo-

javensis and D. arizonae are considered to be sympatric (Wasser-

man and Koepfer 1977; Markow et al. 1983), whereas D. arizonae

is not known to occur in Baja California, we refer to the compar-

ison between D. arizonae and D. mojavensis in Sonora as “sym-

patric” and that between D. arizonae and D. mojavensis in Baja as

“allopatric” throughout.

Lines were collected in nature, returned to the lab, and main-

tained on banana food at room temperature at the University

of Arkansas (Table S1). To minimize heterozygosity, each line

was sibmated for 10 generations prior to sequencing. DNA from

12 female flies per line was extracted using DNeasy mini-kits

(Qiagen, Valencia, California, USA). A single TruSeq library with

a 180 base insert size was prepared for each D. mojavensis line.

Libraries were prepared and sequenced by the NERC genepool

facility in Edinburgh on an Illumina HighSeq machine to 24–29-

fold coverage per line using 100 bp paired-end reads (Table S1).

For the D. arizonae line we generated three TruSeq libraries

with different insert sizes; 180, 300, and 500 bp, each of which

was sequenced on an Illumina MiSeq machine to a combined

mean coverage of 49.1-fold. Raw read data and BAM files have

been deposited at the Sequence Read Archive (SRA, accession

PRJNA278716).

Raw reads were filtered and adapter-trimmed using Scythe

(https://github.com/vsbuffalo/scythe) and Sickle (https://github.

com/najoshi/sickle) and mapped to the D. mojavensis reference

genome v.16. (based on an inbred line from Santa Catalina Is-

land) using Stampy v.1.0.21 (Lunter and Goodson 2011). We set

the expected divergence to 4 %, based on previous estimates

(Machado et al. 2007). The three D. arizonae libraries were com-

bined after mapping. We marked duplicate reads using Picard

(http://picard.sourceforge.net) and performed a local realignment

around indels in GATK v.2.4 (McKenna et al. 2010) using reads

from all lines and default settings.

The resulting BAM files were used to generate all-sites Vari-

ant (VCF) files using mpileup (Li et al. 2009), which were filtered

using VCFtools (Danecek et al. 2011) and custom pyVCF scripts

(available upon request) for mapping quality, base call quality, and

coverage depth. For the X, we included the four largest scaffolds

(Schaeffer et al. 2008). For the autosomes all assigned scaffolds

were used (Schaeffer et al. 2008) (Table S2) with two exceptions:

We did not include the dot chromosome (because of its reduced

recombination rate) and a small scaffold (6654, 2.6 Mb) assigned

to chromosome 4 (because there is some doubt about its assign-

ment and orientation). We analyzed a total of 147.4 Mb, 92.6% of

the euchromatic assigned sequence of the D. mojavensis genome

(Table S2).

We chose a Phred-scaled threshold of 30 for both map-

ping quality and base call quality. To remove putative paralogous

sequences that were misaligned and regions with low coverage,

we filtered out sites with more than 125-fold or less than 10-fold

coverage in any one individual. Applying these filters, a total of

26% of sites in the reference genome were excluded from the

analysis (Table S2). Exploring a range of filtering thresholds con-

firmed that neither per site divergence nor the difference between

rearranged and colinear autosomes were greatly affected by cov-

erage filters (Fig. S6).

GENE DIVERGENCE

Given that rearranged regions make up the majority of the 2nd

and 3rd chromosome scaffold (Fig. 2), we followed Counterman

and Noor (2006) and contrasted divergence between rearranged

and colinear autosomes. Comparing entire chromosomes

avoids making potentially arbitrary assumptions about how far

recombination is reduced beyond inversion breakpoints which

seems particularly problematic for the complex, overlapping

rearrangements on chromosome 2 and 3. It is also conservative

because colinear regions on chromosomes with inversions will

reduce any inversion effect.

We computed mean pairwise divergence between D. arizonae

and D. mojavensis lines from sympatric and allopatric populations

separately for each chromosome and for exons, introns, and inter-

genic regions. Positions of these regions were extracted from the

FlyBase General Feature File (GFF) for D. mojavensis (Marygold

et al. 2012).

We assumed throughout that the effect of linkage disequi-

librium can be ignored at distances >100 kb, which is extremely

conservative given the range of recombination rates measured in

Drosophila (Caceres et al. 1999; Comeron et al. 2012) and the

fact that recombination rates in D. mojavensis appear to be higher

than those in D. melanogaster (Ortiz-Barrientos et al. 2006). To

test for the significance of chromosome-wide differences in diver-

gence, we divided each chromosome into 100 kb nonoverlapping

sections and compared the mean divergence across sections.

We confirmed known inversion breakpoints on chromosome

2 and the X visually by checking the orientation and insert size

of D. arizonae read pairs mapped to the D. mojavensis refer-

ence genome around each breakpoint in the Integrative Genomics

Viewer (Thorvaldsdottir et al. 2012). As expected, the orienta-

tion of reads was reversed around the 2r, 2s, and Xe breakpoints

(Fig. S2). Because of the complex overlap of the three inver-

sions on chromosome 2 (Guillen and Ruiz 2012), read orientation

around both breakpoints of inversion 2q (the oldest inversion) is

not reversed (Fig. 5).

MODELING DIVERGENCE AND GENE FLOW

To assess the support for postdivergence gene flow between

D. mojavensis and D. arizonae, we compared three models: (i)

isolation in allopatry, that is an instantaneous split of a single

ancestral population at time τ0 without gene flow, (ii) isolation
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Figure 1. Alternative scenarios of species divergence: (1) strict divergence without gene flow, (2) isolation with migration (IM), and

(3) isolation with initial migration (IIM). (4) An inversion that predates the species split should be associated with an older population

divergence time τ0.

with a constant rate of symmetric migration of M = 4Nem mi-

grants per generation between τ0 and the present (i.e., the isola-

tion with migration (IM) model) and (iii) a more realistic model

where gene flow is restricted to an initial period after divergence

and ceases at time τ1 (the isolation with initial migration (IIM)

model) (Fig. 1). This 4-parameter model (τ0, τ1, θ = 4Neμ, M)

captures the fact that diverging species may eventually become

completely reproductively isolated. The models make the stan-

dard population genetic assumptions of large, randomly mating

populations of constant size.

A number of methods have been developed to fit these mod-

els either to multilocus data (Hey and Nielsen 2004) or continuous

genomes (Mailund et al. 2012). For minimal samples (one or two

sequences per species) and assuming an infinite sites mutation

model, it is possible to compute analytically the probability of

mutational configurations in a short, nonrecombining block of

sequence (Wang and Hey 2010; Lohse et al. 2011; Wilkinson-

Herbots 2012). In particular, Wilkinson-Herbots (2012, eq. 29)

has derived an expression for the distribution of pairwise differ-

ences (k) under the IIM model. Given a large number of sequence

blocks, this distribution can be used to estimate parameters un-

der the IIM model. Postdivergence gene flow results in an excess

of blocks with no or few divergent sites, and for sufficiently

long blocks, the distribution becomes bimodal. The analytic solu-

tion of Wilkinson-Herbots (2012) allows for efficient maximum

likelihood estimation from arbitrary numbers of sequence blocks

of any length. We implemented this likelihood computation in

Mathematica (notebook available upon request, for an analogous

implementation in R, see Wilkison-Herbots in press, MBE) and

maximised the joint logarithm of the likelihood (lnL) given a

list of pairwise differences in sequence blocks of equal length

(and assuming a constant mutation rate per block) for all three

alternative models using the FindMaximum function.

To minimize the confounding effect of selection and to max-

imise the density of variable sites per block, we limited the like-

lihood analysis to intergenic sequences (Wang and Hey 2010).

Although lines were highly inbred, there was some residual

heterozygosity (on average 0.3 % per site per line) and blocks

with any heterozygous sites were excluded. Choosing a block

length of 250 bp (we later explore the effect of block length,

see Sensitivity analyses) gave a total of 18,268 and 20,404 in-

tergenic blocks for sympatric and allopatric comparisons of D.

mojavensis and D. arizonae, respectively, with an average of 6.2

mutations per block (data available from the Dryad Digital repos-

itory, doi:10.5061/dryad.5jq6p).

To test for postdivergence gene flow, we first compared the

relative support for different models of species divergence. We

limited this initial analysis to the colinear chromosomes, as sup-

port for the divergence with gene-flow in inverted regions may

be reflective of arrangement polymorphism in the ancestor. Since

the isolation model is nested within the IM model, which in turn

is nested within the IIM model, we used likelihood ratio tests

(assuming 2�lnL , the difference in logarithm of the likelihood

between models follows a χ2 distribution) to assess the relative

support of models. This requires accounting for the statistical

effect of linkage disequilibrium between neighbouring blocks.

Assuming that blocks >100 kb apart are unlinked (see previous

section), the difference in lnL between models obtained from an-

alyzing all the data can be rescaled by a factor 1/x , where x is

the mean number of 250 bp blocks in each 100 kb section of the

genome included in the analysis. This is equivalent to randomly

subsampling a single block per 100 kb section of the genome and

averaging the inference across many such subsampled datasets.

Plotting the correlation coefficient of the number of divergent

sites between successively more distant pairs of blocks (Fig. S3)

confirmed that linkage disequilibrium is indeed negligible at dis-

tances >100 kb.

For inversions that arose before the species split, the time of

population divergence under the IIM model (τ0) should represent

the origin of the inversion. To test whether inversions are asso-

ciated with older τ0, we conducted a hierarchical set of model

comparisons allowing individual parameters to differ between

the colinear chromosomes and each rearranged chromosome.

Given that one expects the history of the X to differ from that
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Figure 2. Mean per site divergence in 500 kb sliding windows. Divergence between D. arizonae and D. mojavensis is nearly identical for

allopatric (black) and sympatric (red) comparisons. Divergence between the two D. mojavensis lines is shown in blue. Known inversion

breakpoints on chromosome 2 (Guillen and Ruiz 2012) and the X (Runcie and Noor 2009) are indicated by solid, vertical lines, the position

of the unmapped breakpoints on chromosome 3 by dashed, gray lines. All scaffolds are oriented with the centromere to the left (origin).

of the autosomes in a number of potentially counfounding ways

(Charlesworth et al. 1987), we restricted this analysis to the four

major autosomes. We partitioned the autosomal data into three

sets: chromosome 2, chromosome 3, and chromosome 4 and 5

combined. Our rationale was that one expects the two colinear

autosomes to share the same divergence and gene flow history,

whereas those parameters may differ between chromosome 2 and

3 depending on the ages and combined effects of the inversions

on each chromosome. Thus, under the most complex model, τ0,

τ1, and M were free to vary between the three data partitions

(this is equivalent to running independent IIM analyses on each

data partition). We then tested different model simplifications in

a step-wise manner. Simplifications consisted of constraining one

parameter at a time to be shared across data partitions and were

accepted if this did not significantly reduce model fit relative to

the unconstrained model.

Results
We first investigated gene divergence between D. mojavensis and

D. arizonae, contrasting rearranged and colinear chromosomes

and populations in allopatry and sympatry. We then examined

divergence along the chromosome and, particularly, around in-

version breakpoints. Finally, we used the distribution of divergent

sites in short blocks of intergenic sequence sampled across the

genome to fit explicit models of species divergence with gene

flow and tested how speciation history differs between colinear

and rearranged regions of the genome. Below, we present analyses

based on a single D. mojavensis line from each the Baja California

(A976) and Sonora (LB09) population (analyses based on repli-

cate lines from these populations are discussed in “Sensitivity

analyses”).

GENE DIVERGENCE

Pairwise divergence between D. arizonae and D. mojavensis was

significantly higher for rearranged than colinear chromosomes

(Fig. 2). This was the case for both sympatric and allopatric

comparisons and regardless of whether we considered all sites

combined (Table 1) or exons, introns, or intergenic sequence sep-

arately (Table S4). For example, divergence in sympatry across

all sites was 2.9%, 3.4%, and 2.9 % for chromosomes 2, 3, and the

X, but only 2.4% and 2.5% for chromosomes 4 and 5 respectively

(Mann–Whitney U, P < 10−5). In contrast, divergence between

the two D. mojavensis lines was significantly (Mann–Whitney U,

P < 10−5) smaller for chromosomes 2 and 3 than chromosomes

4 and 5 (Table 1).

If introgression between D. mojavensis and D. arizonae is

ongoing or recent, it should be stronger in areas of sympatry,

that is mainland Mexico. Contrary to this, we found no reduction

in pairwise divergence between D. arizonae and D. mojavensis

in sympatry (Table 1). The sliding window plots for divergence

in sympatry and allopatry were virtually identical (see red and

black lines in Fig. 2). Likewise, we found no excess of mutations

shared between D. arizonae and D. mojavensis in sympatry but

not in allopatry (Dariz=Dmoj-LB09 �= Dmoj-A975) compared

to mutations shared between D. arizonae and D. mojavensis in
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Table 1. Mean chromosome-wide divergence between D. mojavensis and D. arizonae in sympatry and allopatry and between

D. mojavensis populations in Baja and mainland Sonora.

Chrom. Dariz/Dmoj-LB09, sym Dariz/Dmoj-A975, allo Dmoj-LB09/Dmoj-A975

2∗ 0.0289 (0.0041) 0.0282 (0.0039) 0.0089 (0.0019)
3∗ 0.0340 (0.0056) 0.0329 (0.0053) 0.0100 (0.0024)
4 0.0238 (0.0042) 0.0232 (0.0041) 0.0108 (0.0027)
5 0.0253 (0.0034) 0.0246 (0.0034) 0.0116 (0.0024)
X∗ 0.0286 (0.0037) 0.0276 (0.0035) 0.0099 (0.0020)

Standard deviation across 100 kb sections are given in brackets.
∗
Chromosomes with fixed inversion differences between D. arizonae and D. mojavensis.

allopatry but not in sympatry (Dariz=Dmoj-A975 �= Dmoj-LB09)

(Kulathinal et al. 2009) (Table S5). This is essentially an unpo-

larised version of the D-statistic recently used to test for introgres-

sion from Neanderthals into modern humans (Green et al. 2010).

In fact, considering the total counts of both types of sites (so not

accounting for the effect of physical linkage, see Methods), we

observed a slight excess of Dariz=Dmoj-A975 �= Dmoj-LB09

sites, a pattern opposite to that expected. However, when we

randomly subsampled sites with a minimum distance of 100 kb

(or indeed 10 kb) to account for the non-independence of nearby

sites due to linkage, this difference was not significant (257 vs

259, Binomial sign test, P = 0.48 (Table S5)).

Plotting pairwise divergence in 500 kb sliding windows

(Fig. 2) revealed a marked increase in divergence in a large re-

gion (18–26 Mb) in the center of chromosome 2 that contains

four inversion breakpoints. We also found pronounced peaks in

divergence near the proximal breakpoints of inversions 2r and 2s

(Fig. 2). Likewise, there were clear peaks in divergence centered

on the breakpoints of inversion Xe (Runcie and Noor 2009) and 3d

(6.2 and 27.1 Mb) that were recently mapped in a comparison be-

tween the genomes of D. buzattii and D. mojavensis (Delprat et al.

2015) (Fig. 2). Although the breakpoints of inversion 3p2 have

not yet been characterized, we hypothesize based on cytological

maps (Ruiz et al. 1990), that the observed peak in divergence at

21 Mb coincides with the proximal breakpoint of this inversion.

MODELING DIVERGENCE AND GENE FLOW

For both allopatric and sympatric comparisons of D. arizonae and

D. mojavensis the IIM model gave a significantly better fit to the

colinear data (as measured by �lnL) than the IM model, which

in turn fit better than a null model of strict divergence without

gene flow (Table 2). In contrast, we could not reject the IM model

(in favor of IIM) for the much more recent split between the two

D. mojavensis populations (Table 2).

We initially examined parameter estimates under the most

complex variant of the IIM model in which all parameters were

allowed to differ between the two rearranged autosomes and col-

inear autosomes (Table S6). Assuming that inversions arose at or

Table 2. Support for the isolation with migration (IM) and strict

divergence (Div) model of species divergence (�lnL relative to the

IIM model) estimated from 250 bp blocks.

Comparison Div IM

Dariz/Dmoj-LB09 sym −2.95 −2.05
Dariz/Dmoj-A975 allo −2.98 −2.23
Dmoj-LB09/Dmoj-A975 −1.62 −0.0093

For comparisons between D. arizonae and D. mojavensis only colinear chro-

mosomes were used.

after the time of species divergence (i.e., that τ0 is shared between

colinear and rearranged autosomes) only resulted in a very minor

(and non-significant) reduction in model fit (Table 3). Likewise,

allowing the cessation of gene flow (τ1) to be shared across all

three data partitions did not significantly reduce model fit. Thus,

the simplest supported scenario was an IIM history in which both

time parameters were shared between data partitions but colinear

autosomes and chromosome 2 and 3 had different rates of gene

flow (Table 3). Under this model, the effective rate of gene flow

M at colinear autosomes was estimated to be more than twice that

at chromosome 2, which in turn was almost twice that at chomo-

some 3 (Table 4, Fig. 4). No other parameter better explained

the difference in the block-wise distribution of divergent sites be-

tween rearranged and colinear autosomes (Fig. 3). The fact that

there was no evidence for an older τ0 at rearranged chromosomes

(Table S6) can also be seen from the broad overlap in the marginal

support for this parameter under an unconstrained analysis

(Fig. S4). Interestingly, the best-supported model in which two

parameters differed between rearranged and colinear autosomes

included an earlier (100–200 KY) cessation of gene flow (τ1) at

rearranged autosomes (Table 3). However, given our (conserva-

tive) correction for the effect of physical linkage (see Methods),

this model did not fit significantly better than the simpler sce-

nario where only M differed between rearranged and colinear

autosomes (Table 3).

The ranking of alternative models was identical for allopatric

and sympatric comparisons (Table 3). Likewise, parameter
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Figure 3. The distribution of divergent sites (k) between D. arizonae and sympatric D. mojavensis in 250 bp (left) and 500 bp (right)

intergenic blocks. Colinear chromosomes 4 and 5 are shown in black, the inverted chromosomes 2 and 3 in blue and green, respectively.

Points are joined for clarity. The expected distributions under the best supported model inferred from the data (Table 3) are shown as

dashed lines.

Table 3. Support (�lnL relative to a completely unconstrained

model) for hierarchical model simplifications.

data (τ0) (τ1) (τ0, τ1) (τ0, M) (τ0, τ1, M)

Dariz/Dmoj-LB09
sym

−0.32 −1.6 −1.6∗ −2.6 −20.5

Dariz/Dmoj-A975
allo

−0.31 −1.9 −2.0∗ −2.5 −24.7

Constraining particular parameters (in brackets) to be shared across all au-

tosomes reduces model fit. However, the reduction in model fit is not sig-

nificant for τ0 and τ1, that is the simplest, supported model (∗) assumes that

τ0 and τ1 are shared across all autosomes.

estimates under the simplest supported model (IIM with differ-

ent M) were very similar for D. arizonae and D. mojavensis in

sympatry and allopatry (Table S8).

MOLECULAR CLOCK CALIBRATION

To convert divergence time estimates (which are scaled in units of

2Ne generations) into absolute values, we applied a genome-wide,

direct mutation rate estimate for D. melanogaster of 3.46 × 10−9

(Keightley et al. 2009) and assumed six generations per year.

Given the uncertainty associated with these assumptions, the aim

of this calibration was merely to obtain an approximate date of

events that can be compared to previous studies based on the same

molecular clock.

Smith et al. (2012) analyzed data from 15 introns to study the

history of three of the four geographically diverged D. mojaven-

sis populations (including Baja California and mainland Sonora)

that are partially reproductively isolated from each other by host

plant, mating behavior, and geography (Mettler 1957; Markow

1991; Etges et al. 2007). While the assumption of neutrality (and

hence the application of the spontaneous mutation rate) may be

reasonable for intronic sequence, the intergenic regions analyzed

here were less diverged between D. arizonae and D. mojavensis

(0.025 across all autosomes compared to 0.043 for the introns

analyzed by Smith et al. (2012)). This presumably reflects the

greater selective constraint on intergenic regions (Halligan et al.

2004). To account for this, we corrected the mutation rate by a

factor 0.025/0.043 = 0.58. With this calibration, our θ estimates

corresponds to an ancestral Ne of around 6.5 × 105 (Table 4),

divergence between D. arizonae and D. mojavensis is estimated at

ca 1.3 MYA and the cessation of gene flow ca 270 KYA (Table 4).

Reassuringly, our estimate for the divergence between Baja

and the mainland populations of D. mojavensis (ca 220 KY under

the IM model, Table S7, Fig. 3) roughly matches that of Smith et al.

(2012) (ca 250 KYA). We stress however that there is considerable

uncertainty in these estimates (Fig. 4) even when we ignore the

uncertainty in the mutation rate estimate and generation time of

D. mojavensis in the wild.

THE AGE OF INVERSION 2q

A duplication associated with the breakpoints of inversion 2q

allows a unique and independent estimate for the age of this in-

versions (Guillen and Ruiz 2012). Because this 4.3 kb duplication

likely arose with the inversion, one can use the gene divergence

between the two duplicates in D. mojavensis to date the origin

of the inversion. Applying the D. melanogaster mutation rate to

the divergence between the 2q duplicates in the D. mojavensis

reference genome and assuming that the non-functional dupli-

cate accumulates mutations at the neutral rate, gives a date of

1.25 MY (note that Guillen and Ruiz (2012) estimated a diver-

gence of 1.4 MY based on a lower mutation rate of 0.0111 per

MY). Assuming that the number of differences between the two

duplicates is Poisson distributed, we can plot the support for the

estimated inversion age (Fig. 4B, turquoise line). This overlaps
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Figure 4. (A) Marginal support (�lnL relative to the maximum likelihood solution) for the rates of gene flow (M) between D. arizonae

and D. mojavensis (sympatric comparison) estimated in colinear (black) and rearranged (chromosome 2, blue; chromosome 3, green)

autosomes under the IIM model. (B) Marginal support for the onset of species divergence (τ0) and the cessation of gene flow (τ1) (black)

and the divergence time between D. mojavensis populations in Baja California and Sonora (red). The age of the inversion 2q falls within

the estimated onset of divergence between D. arizonae and D. mojavensis (turquoise). The horizontal line defines 95% confidence

intervals of parameter estimates.

Table 4. Maximum likelihood estimates of parameters under the simplest, supported model of speciation estimated from 250 bp

intergenic blocks.

Comparison θ (Ne) M2 M3 M4&5 τ1 τ0

Dariz/Dmoj-LB09, sym 1.29 (0.65 ×106) 0.47 0.25 0.89 1.26 (272 KY) 5.96 (1,290 KY)
Dariz/Dmoj-A975, allo 1.33 (0.66 ×106) 0.45 0.25 0.98 1.17 (260 KY) 5.57 (1,240 KY)
Dmoj-LB09/Dmoj-A975 0.72 (0.36 ×106) 0.40 0.40 0.40 0 1.76 (213 KY)

Scaled time parameters are given in brackets.

very broadly with the maximum likelihood estimate for the onset

of species divergence around 1.3 MY and suggests that inversion

2q arose around the same time. Given the overlap of the three in-

versions on chromosome 2, we know that inversion 2q must have

arisen first (Fig. 5) (Guillen and Ruiz 2012). Thus, the estimated

time of the duplication event is an upper bound for the age of all

three inversions on chromosome 2.

SENSITIVITY ANALYSES AND MODEL FIT

We investigated whether other factors could explain the greater

divergence at rearranged compared to colinear autosomes. For

example, a greater gene density on a chromosome may be as-

sociated with stronger purifying selection, which in turn could

lead to a decrease in divergence. However, gene density in D.

mojavensis (as measured by the proportion of exonic sequence)

does not differ systematically between colinear and rearranged

chromosomes (Table S2). Noor and Bennett (2009) have argued

that apparent differences in divergence between inverted and col-

inear chromosomes could simply reflect a bias in mapping quality,

which is expected to be lower in the presence of rearrangements.

While we found mean mapping quality to be slightly lower at

rearranged autosomes as expected (Table S2), this could not ex-

plain the observed difference in divergence. Any effect of map-

ping quality must be restricted to the vicinity of the inversion

breakpoints. Removing 100 kb around each of the known inver-

sion breakpoints on chromosome 2 did not reduce chromosome-

wide divergence. Likewise, filtering with higher (or lower) cov-

erage thresholds had almost no effect on the observed difference

in divergence between colinear and rearranged autosomes (Fig.

S1). In general, any systematic difference in the mapping prop-

erties of colinear and rearranged autosomes should also lead to

an increase in divergence in the comparison of the two D. mo-

javensis populations, which we did not observe. On the contrary,

their divergence was slightly lower at rearranged chromosomes

(Table 1).

Although the divergence between any pair of genomes is de-

termined by many independent coalescent events involving a very

large number of ancestors (Wakeley 2009), it may seem risky intu-

itively to reconstruct speciation history from just a single sample

per population. For example, D. mojavensis may have complex

and potentially old population structure within Sonora, in which

case signatures of gene-flow from D. arizonae could be specific

to particular subpopulations (Slatkin and Pollack 2008). We re-

peated the likelihood analyses using different replicate lines from
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Figure 5. Schematic of the speciation history of D. arizonae and

D. mojavensis. The onset of divergence around 1.3 MY was fol-

lowed by a prolonged period of gene flow that ceased before

the divergence of the different populations of D. mojavensis. In-

version 2q arose in D. mojavensis during the onset of divergence

(blue star) and is the first in a cascade of three overlapping in-

versions on chromosome 2 that became fixed in D. mojavensis

(adapted from Guillen and Ruiz (2012)).

both the Baja and the Sonora populations of D. mojavensis; A976

and PO88, respectively (Table S1). Reassuringly, these replicate

analyses gave very similar parameter estimates (see Tables S8

and S9). The only exception to this was the M estimate for chro-

mosome 2 for P088 (Table S8) that is most likely a result of the

excessive residual heterozygosity of this line on chromosome 2,

which meant that only half as many chromosome 2 blocks could

be included in the analysis.

To investigate the impact of recombination within blocks on

our inference, we repeated the likelihood analyses with longer

blocks (500 bp). This resulted in a slight decrease in estimates

of M and an increase in estimates of τ0 (Table S7). Both are

well known biases arising from the fact that our approach ig-

nores recombination within blocks, which becomes increasingly

problematic for longer blocks (Wall 2003). Importantly however,

the influence of block length on parameter estimates was small

and the ranking of models was unaffected. We stress the fact that

ignoring recombination within blocks slightly underestimates mi-

gration and so renders our inferences of significant postdivergence

gene flow conservative (Table S7).

Discussion
Several conclusions emerge from our genome-wide analyses of

divergence between D. arizonae and D. mojavensis:

First, our analysis of the colinear data shows that this speci-

ation history involved a prolonged period of gene flow after the

onset of divergence (Fig. 5). This is in contrast to earlier studies

based on smaller sets of loci and simpler models that lacked the

power to detect gene flow (Machado et al. 2007; Counterman and

Noor 2006).

Second, and in contrast to the situation in D. persimilis and

D. pseudoobscura (Kulathinal et al. 2009), we did not find any

difference in divergence in sympatry versus allopatry, suggesting

that introgression between these species is historical rather than

recent or ongoing. This conclusion is also supported by the better

fit of the IIM model compared to a scenario of isolation and

migration until the present (IM) and the fact that the estimated

cessation of gene flow between D. arizonae and D. mojavensis

predates the divergence between D. mojavensis populations in

Baja California and Sonora (Table 4, Fig. 5).

Third, all three chromosomes harboring fixed paracentric in-

versions (chromosomes 2, 3, and the X) showed greater gene

divergence than the colinear autosomes 4 and 5. While we see a

classic signature of increased divergence around inversion break-

points on chromosome 3 and the X (Kulathinal et al. 2009), the

picture is less clear-cut for chromosome 2. Instead, it seems that

the complex overlap of these inversions eliminated crossing-over

across most of the chromosome, and the pattern of decreased di-

vergence inside inversions due to double-crossover events does

not apply (Dobzhansky 1937, Fig. 3, p. 111).

Finally, our hierarchical comparison of models showed that

the increase in gene divergence at rearranged chromosomes is best

explained by a reduction in gene flow. Importantly, our model

comparison suggests that it is unlikely that the autosomal in-

versions arose and became fixed long after the onset of species

divergence (Noor and Bennett 2009). However, we emphasize that

because of the long period of gene flow, there is limited informa-

tion about τ0 in the data. Assuming gene flow at rate M = 0.47

for a period of τ0 − τ1 = 4.7 (2Ne generations) implies that only

a fraction of e−(4.7)0.47 = 0.11 of lineages are unaffected by mi-

gration and so contribute information about τ0. Perhaps stronger

support for the conclusion that the fixed inversions do not pre-

date species divergence comes from the gene divergence between

the two duplicates generated by the 2q inversion breakpoint. This

provides an upper bound for the age of all three inversions on

chromosome 2 that is independent of the likelihood estimate for

τ0, but nevertheless agrees surprisingly well with it. We empha-

size that the comparison between estimates for τ0 and the age of

inversion 2q does not rely on any molecular clock calibration.

MODELLING DIVERGENCE AND GENE FLOW

Using explicit models to reconstruct past speciation histories

clearly has the potential to disentangle the processes involved

in speciation and test how parameters such as gene flow differ be-

tween different parts of the genome. Our hierarchical framework is

general and can be used to contrast historical parameters between

any partition of the genome. Sousa et al. (2013) have recently
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developed a similar method based on IMa (Hey and Nielsen 2004).

However, this approach is computationally intensive and does not

scale to genomic data. In contrast, the analytic likelihood com-

putation of Wilkinson-Herbots (2012) provides an efficient way

to fit simple divergence and gene-flow models to whole genome

data. It also does not suffer from an inflated rate of false positives

(i.e., detecting migration when there is none) (Wilkinson-Herbots,

in press), which has recently been reported for IMa (Cruickshank

and Hahn 2014).

Basing inferences on absolute pairwise divergence clearly

involves a trade-off: One the one hand, sampling just a single in-

dividual per population circumvents the well-known problems of

Fst -based analyses (Charlesworth 1998; Noor and Bennett 2009)

and allows for efficient analytic likelihood computations. On

the other hand, such minimal sampling necessarily comes at the

expense of statistical power and limits the complexity of historical

models that can be explored. For example, one might bemoan

the fact that we have ignored changes in Ne and instead assumed

that the common ancestral population of D. mojavensis and D.

arizonae split into two daughter species of the same effective

size. Furthermore, if speciation involves a gradual build-up of

reproductive isolation, one would ideally like to fit models of

decreasing gene flow rather than assume that both divergence and

the cessation of gene flow are instantaneous events. However, the

tight fit between the observed distribution of pairwise differences

and that predicted under the IIM model we infer (Fig. 3), suggests

that there is little additional information in the distribution of pair-

wise differences to distinguish such more realistic scenarios. In

general, the IIM model is an important extension of the IM model,

because it makes the inferences of postdivergence gene flow

independent of the age of a particular species pair, an important

prerequisite for comparative analyses of speciation histories.

A ROLE OF INVERSIONS IN SPECIATION?

Taken together our results are compatible with a scenario where

multiple inversions originated and became fixed as D. mojavensis

and D. arizonae began to diverge, as envisioned by models of

speciation in the face of gene flow (Navarro and Barton 2003;

Kirkpatrick and Barton 2006). These models show that inversions

can accelerate the build up of reproductive isolation (Navarro

and Barton 2003) and, in turn, are able to spread if they trap

multiple locally beneficial loci in the early stages of divergence

(Kirkpatrick and Barton 2006).

However, we stress that our results do not allow us to draw any

conclusions as to whether there has been direct selection against

introgression at an inversion, or whether the reduction in gene

flow we detect simply reflects reduced recombination. Likewise,

we do not know whether inversions became established because

of selection on genes inside them or due to some other (poten-

tially neutral) mechanism. Under the Kirkpatrick–Barton model,

the selective advantage of an initially rare inversion trapping lo-

cally beneficial alleles due to the migration load is proportional

to the migration rate (m) and the number of beneficial alleles

(Kirkpatrick and Barton 2006, eq. 2). Thus, given our estimates

for Ne and the number of migrants M4&5 (Table 4), the benefit due

to the migration load of an inversion would be extremely weak

(on the order of 10−4) even if it trapped hundreds of beneficial

alleles. However, we emphasize that the strong and potentially

short-lived migration required for the initial establishment of an

inversion under the Kirkpatrick–Barton model is far beyond the

resolution of coalescent-based inferences that can only detect

weak and long-term (on the time-scales of drift and the per locus

mutation rate) postdivergence gene-flow. Short-term gene flow at

much higher rates would be indistinguishable from a panmictic

ancestral population.

An important aim of future genomic studies on species with

fixed inversion differences is to explore the link with phenotypic

evolution and, specifically test whether loci involved in adaptation

or isolating barriers are concentrated in rearranged chromosomes.

This would be further evidence for a role of inversions in specia-

tion. Studies of other species have suggested that isolating traits

(such as floral traits in plants (Fishman et al. 2013)) map to rear-

rangements. So far, mapping studies for traits involved in mating

behavior (song and cuticular hydrocarbons) in D. mojavensis have

not found a greater concentration of quantitative trait loci on chro-

mosomes 2 and 3 (Etges et al. 2009).

Perhaps a more promising avenue to detecting evidence of

past selection on inversions is to look for selective sweep signa-

tures of decreased diversity around more recent inversions. In-

triguingly, the pairwise diversity of the two D. mojavensis lines

shows small but noticeable troughs around some of the inversion

breakpoints (blue line in Fig. 2). For example, the mean pair-

wise diversity in the 100 kb regions on either side of each of the

six inversion breakpoints on chromosome 2 is reduced (0.76 %)

compared to the chromosome-wide average (0.90 %, Table 1)).

This difference is significant in a permutation test (P < 0.02).

Given the age of D. mojavensis and D. arizonae, selective events

at the time of species divergence should have a small effect on

pairwise diversity in D. mojavensis. For example, a hard se-

lective sweep at the time of species divergence would truncate

the distribution of pairwise coalescence times at T = τ0 − τ1.

Thus, the average coalescence time for a pair of lineages sampled

from Baja and mainland Sonora would be reduced by a factor

of 1 − eT (1 + T ) = 0.95 (assuming, T = 4.7, Table 4). The fact

that the observed reduction in diversity around breakpoints on

chromosome 2 is slightly larger could either be due to chance or

more recent selective events. Future studies on the genome wide

diversity in D. mojavensis in larger samples should be able to

reveal whether the inversions fixed between D. arizonae and D.

mojavensis have been under strong directional selection, and how
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the timing of the potential sweeps involved fits into the speciation

history we have inferred here.
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Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Table S1: Origins of the three populations of Drosophila mojavensis and D. arizonae in this study and numbers of flies used to establish laboratory
populations.
Table S2: Summary of scaffolds analysed: Composition (% exon), total length of mapped reads before and after filtering and average mapping quality
(MQ) of D. arizonae reads mapped against the D. mojavensis reference genome.
Table S3: Breakpoint coordinates of inversions fixed between D. mojavensis and D. arizonae.
Table S4: Mean pairwise divergence for exons, introns and intergenic regions.
Table S5: Counts of sites uniquely shared between D. mojavensis and D. arizonae in sympatry or allopatry at colinear autosomes.
Table S6: Maximum likelihood estimates of parameters under the IIM model estimated from 250 base intergenic blocks without constraints, i.e. M and τ

parameters are free to vary between colinear autosomes, chromosome 2 and chromosome 3.
Table S7: Maximum likelihood estimates of parameters under the simplest, supported model of speciation estimated from 500bp intergenic blocks.
Table S8: Maximum likelihood estimates of parameters under a model of isolation with initial migration (IIM) which differs between rearranged and
colinear autosomes.
Table S9: Mean chromosome-wide divergence between D. mojavensis and D. arizonae in sympatry (Sonora) and allopatry (Baja) for replicate lines PO88
and A976.
Figure S1: The effect of filtering on mean chromosome-wide divergence between D. arizonae and (allopatric) D. mojavensis; the filtering thresholds used
are shown as dashed lines.
Figure S2: Example IGV screenshot of D. arizonae reads mapped to the D. mojavensis reference genome.
Figure S3: Mean correlation coefficient for the number of divergent sites between D. mojavensis (LB09) and D. arizonae for pairs of 250 bp intergenic
blocks plotted against distance (i.e. # of successive blocks apart).
Figure S4: Marginal support (�lnL) for τ0 estimated independently for chromosome 2 (blue), 3 (green) and 4& 5 combined (black) (point estimates in
Table S6).
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